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Strange attractor of the modulated Stokes wave: A universal form
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This Rapid Communication argues that the strange attractor recently found in the context of the
modulated Stokes wave [H. T. Moon, Phys. Fluids A 3, 2709 (1991)] is a universal form and indeed the
asymmetric counterpart of the Lorentz attractor. Furthermore, this form appears to reveal another class
of universality in that it follows the evolution pattern set by the tent map. This is in marked contrast to
the Rossler attractor, which follows the universal sequence of the logistic map.

PACS number(s): 05.45.+b, 47.20.Ky, 47.27.Cn

Since the discovery of the chaotic attractor by Lorenz
[1], chaos has become an important concept in nearly all
branches of natural sciences. Incidently, the Lorenz at-
tractor itself has been one of the subjects of the most in-
tensive studies. Omne of the natural questions that fol-
lowed the Lorenz attractor was on its symmetry, essential
to the global structure. Rossler [2], also motivated by the
question, was able to extract an asymmetric structure
from his proposed equations. This structure, called the
Rossler attractor, however, has a different folding mecha-
nism. Since then these two attractors have become two
principal paradigms for chaotic attractors. They are in
fact prototypes of two broad categories of chaotic attrac-
tors [3]. In one type, folding is accomplished by splitting,
or homoclinic crossings, while in the other category the
folding is accomplished by a continuous bending in phase
space. Notably, they are both reducible into a one-
dimensional map with a remarkable simplicity.

Whether the Lorenz attractor has its asymmetric coun-
terpart still remains open, but such a structure, if it ex-
ists, would be essential to the understanding of the possi-
ble basic forms of the chaotic attractors. The purpose of
this Rapid Communication is to argue that the strange
attractor recently found in the context [4] of the modulat-
ed Stokes wave (abbreviated to SAMS) is indeed the
asymmetric counterpart of the Lorenz attractor, and also
a universal form. Furthermore, this form appears to ex-
hibit another kind of universality in that it follows the
evolution patterns of the algebraically defined tent map.
This is in marked contrast with the Rossler attractor
which follows the universal evolution schemes of the
smooth logistic map [3]. Despite the difference in the un-
derlying folding mechanisms, ther appears a profound
parallelism existing between SAMS and the Rdssler at-
tractor. This point is made clear throughout the study
by comparing the characteristic features of SAMS with
those of the Rossler attractor.

Briefly, I would like to introduce here the origin of
SAMS. The Stokes wave is important in many disciplines
of physics, and the modulational instability associated
with it has been a long-standing problem [5]. It needs,
however, to be studied through the partial differential
equation known as the Ginzburg-Landau (GL) equation
[6]. The existence of a strange attractor near the Stokes
wave was known for some time [7], but the concrete ap-
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pearance of its topological structure has been known only
recently [4]. The detailed geometric information of the
phase portraits is now available through an analysis of a
much simpler reduced phase space. The attractor ob-
tained in the new space is not meant to be identical to
that in the original space, though the new representation
may retain the same topological properties if it is not too
complicated. The Stokes wave, under given conditions,
evolves into one of three definite wave patterns, whose or-
bits, in a reduced space, can be found globally connected
by a double homoclinic orbit [4]. The dynamics soon be-
come unstable and the resulting spatial patterns under-
lined by temporal chaos are then attributed to the homo-
clinic orbit. It is this strange attractor which we all
SAMS here.

We start by presenting the one-dimensional (1D) map
of SAMS in Fig. 1(a). The 1D map of the Rdssler attrac-
tor is also presented in Fig. 1(b) for comparison. The two
attractors are obtained from the following dynamical sys-
tems, known, respectively, as the Ginzburg-Landau and
the Rossler equations:

U, =+ +ic)Y,, —(1+ic,)|y|*y, (1
xX=—y—z, y=x+ay, z=B+xz—0z, (2)
where the coefficients are set ¢;=5,c, = —4 for Eq. (1)

and a=0.2,8=0.2,0=4.55 for Eq. (2). Equation (1)
possesses an equilibrium solution known as the Stokes
wave ¥, (t)=e ', which is modulated initially by the
sideband waves as ¥(x,0)=1,(0)+0.05¢ "4
+0.05¢‘~%), The sideband wave number ¢ is the con-
trol parameter. Figure 1(a) was obtained for g =0.924 by
plotting Q, ., the (n +1)th maximum of the amplitude
of the modulating mode |a,(?)|, as a function of Q,, the
nth maximum of |a,(¢)|. The 1D map of the Rossler at-
tractor of Fig. 1(b) was obtained by plotting R, ,;, the
(n +1)th maximum of the variable x (¢), as a function of
R, the nth maximum of x (7).

The two maps look globally similar except the shapes
of the maxima: the first map has a sharp peak, whereas
the second map has a smooth maximum. In the first
map, the slope is everywhere greater than 1 in magnitude
except at the peak where the sign changes from positive
to negative. In the second, the magnitude of the slope is
smaller than 1 near the maximum. With the double
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FIG. 1. The one-dimensional maps obtained from the strange attractors. (a) SAMS, (b) the Réssler attractor. p denotes the unt-
able fixed point and p’' denotes it antecedent. Reinjection to p is possible through p’. They are both asymmetric, but notice the

difference in their shapes of the maxima.

homoclinic orbit being the source for chaos, the sharp
peak of the first map, like the Lorenz map, is related to
the folding mechanism of homoclinic crossings. On the
other hand, the smooth maximum of the second map is,
as is well known [3], the manifestation of the folding
structure of continuous bending. The two maps
displayed are therefore exhibiting the difference in their
own folding mechanisms.

Figure 2 depicts how SAMS evolves within the chaotic
regime, starting from the fixed point denoted by a. We
note that state a is actually representative for a two-
frequency motion; one frequency in the amplitude and
the other in the phase. State a becomes unstable to the at-
tracting set that looks like two points (state b) in the reso-
lution of the figure. For values of g decreasing, it is found
that state b loses its stability to a state having four bands
(state c), then to a state having two bigger bands (states d
and e), and finally to a state with one big band (states f
and g). We observe that the final global form of the at-
tractor, i.e., the structure of state f or g, remains robust
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FIG. 2. The evolution of SAMS within the chaotic regime,
starting from the fixed point state denoted by a; a(g =0.985),
b(q=0.980), ¢(g=0.970), d(g=0.950), e(g=0.936),
f(g=0.920), g(g =0.900), h(q =0.890). The final structure
before getting out of the chaotic regime, i.e., state f or g, is seen
ultimately asymmetric. Notice that, since state a represents a
T? torus, the evolution patterns also illuminate the manner in
which a T? torus loses its stability.

until it ceases to be chaotic (see h). It is to be noticed
that this final structure, unlike the Lorenz attractor, is ul-
timately asymmetric. Later, we shall compare the evolu-
tion patterns shown here with the patterns of the algebra-
ically defined tent map. State a being T2 torus, we also
note that the bifurcation patterns displayed in Fig. 2 il-
luminate the manner in which a T2 torus loses its stabili-
ty [8].

As found above, the final structure of SAMS is asym-
metric and in this paper we are concerned with the dy-
namic properties of this final structure. It has been seen
in Fig. 1 that both SAMS and the Rossler attractor, asso-
ciated with their asymmetry, have an unstable fixed point
and its antecedent, denoted, respectively, by p and p’.
Thus, the fixed point p, although unstable, does not
disappear, but is revisited through p’. This reinjection
behavior was actually pointed out by Rdéssler [2] for his
system. It is implied by the maps that reinjection in each
system takes place with a definite probability. These
asymmetric attractors may then be viewed as composed
of two metastable attractors; one being a chaotic attrac-
tor and the other being a periodic attractor. The study of
the dynamics then comprises three parts; the chaotic
phase, the laminar phase, and the statistics of reinjection.

As for the properties of the chaotic motion alone, we
may look at state e shown in Fig. 2, which does not con-
tain the unstable fixed point p as part of the attractor. In
this case, the attractor consists of two disjoint segments.
We refer here to the upper segment of the larger ampli-
tude as the fundamental and the lower segment of the
smaller amplitude as the subharmonic. Since every other
iteration will bring the iteration back into the same seg-
ment, it appears necessary to look at the second return
map Q,.,=FXQ,)=F(F(Q,)) as well. The result is
shown in Fig. 3, where the first return map F, drawn in a
faint line, is also inserted for comparison. Figure 3(b)
displays the corresponding situation of the Rdssler at-
tractor at c =4.55. We observe that the chaotic behavior
of the fundamental, and the chaotic behavior of the
subharmonic, are, respectively, described by the familiar
Lorentz-type map. The basic structure constituting the
chaotic dynamics of SAMS is therefore found to be a
combination of two Lorenz-type maps, one for the funda-
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FIG. 3. The second return map, Q, +,=FXQ,). (a) SAMS when ¢ =0.932, (b) the Rdssler attractor when o =4.47. The first re-
turn map @, +,=F(Q,), drawn in a faint line, is also inserted for comparison. f denotes the fundamental and s denotes the subhar-
monic. The chaotic behavior of f, or s, is described in (a) by the Lorenz type map, while in (b) the full quadratic map.

mental and the other for the subharmonic. On the other
hand, the fundamental and the subharmonic, constituting
the Rossler attractor, are, respectively, described by the
full symmetric quadratic map.

The statistical aspects of the reinjection process of
SAMS can be seen clearly by comparing the second re-
turn maps obtained, respectively, when the attractor con-
tains, or does not contain, the fixed point p in it. The re-
sult is shown in Fig. 4. The outer bigger map is the one
obtained from the state shown in Fig. 1(a) and the inner
smaller part is the one obtained from the state shown in
Fig. 3(a). For clarity, only the right-hand side from the
fixed point p is plotted. It shows that if, while wandering
during a chaotic phase, the trajectory crosses the line
denoted by e, i.e., Q, +,> e, the following iterations will
bring the trajectory back into the neighborhood of p. We
notice that this picture is identical with the one con-
sidered by Yorke and Yorke [9] in their investigation of
the transient chaos in the Lorenz system. The differences
are twofold. First, Yorke and Yorke considered the first
return map, whereas here we considered the second re-
turn map. Second, in the transient chaos of the Lorenz
system, the fixed point is stable, while here the fixed point
is unstable. We note that Yorke and Yorke found numer-
ically that the statistical distribution of the length of the
transient chaos was exponential.

Phenomenologically reinjection to p implies relaminari-
zation and we next compare the phenomenology ex-
pressed by SAMS and by the Rossler attractor. In Fig. 5,
we plotted the time evolution of |a,(¢)| of SAMS and the
time evolution of x (¢) of the Rossler attractor, in which
C denotes the chaotic phase and L denotes the laminar
phase. The difference between the chaotic phases of the
two systems is highly visible. We note first the wild be-
havior of the periods of the chaotic oscillations of SAMS.
Obviously this unpredictability of the periods is the mani-
festation of the existence of the homoclinic saddle point,
the orbit spending varying periods of time depending on
the proximity to the saddle point. No such behavior is
observed in the Rdssler attractor. Given the parabolic
form of the one-dimensional map, the chaotic phase of

the Rossler attractor is characterized by period dou-
blings.

The universality of the Rossler attractor is well known
in that it follows the universal bifurcation sequence of the
logistic map [3]; hence we may look for the analog to
SAMS:

T)(x)=A1-2]x —1/2]) . 3)
The above map is the tent map algebraically defined on
0=<x=1for 0SA=<1. Here A, a nonlinearity measure, is
the control parameter. Figure 6 shows the bifurcation se-
quence of the tent map starting from the fixed point
denoted by a, which becomes unstable for A>1/2. The
unstable fixed point is not in the attractor until A reaches
the value A=1/V2, where the fixed point, together with
its antecedent, becomes part of the attractor (state f).
Upon comparing the bifurcation patterns with those of
SAMS in Fig. 2, we find that the two evolution patterns
are identical. This shows that SAMS actually followed in
the predetermined path as set by the tent map. We note

0.35

Qn+2 "

0.30 S
0.30 035
Qn

FIG. 4. Statistical aspects of reinjection process. The outer
map is the second return map of the subharmonic obtained from
the state shown in Fig. 1(a) and the inner map is the one from
the state shown in Fig. 3(a). It shows that if, while wandering
during a chaotic burst, the iteration crosses the line denoted by
e, i.e., Q, 42> e, the following iteration will be brought back into
the neighborhood of p, where a laminar phase starts again.
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FIG. 5 Intermittent phenomena exhibited (a) by SAMS, and
(b) by the Rdssler attractor. C denotes the chaotic phase and L
denotes the laminar phase. The difference in the chaotic phases
is visible. In (a), a wild behavior of the periods of the orbit is
seen as characteristic, while in (b) the chaotic phase is charac-
terized by period doublings.

that the structure of the tent map at A=1/V2 corre-
sponds to the final asymmetric form of SAMS. Therefore
the tent map is representative of SAMS for a lambd in
the range of 1/2<A<1/v2. We point out here that the
Lorenz attractor was actually modeled by Lorenz [1] by
the tent map with A=1 at which the map becomes fully
symmetric.

The Lyapunov exponent for the tent map, as a function
of the nonlinearity A, is found to be L =In2A. This infers
that the Lyapunov exponent for SAMS grows logarith-
mically and bounded as 0 <L <InV'2. State b of Fig. 2,
characterized by two points, is thus chaotic even though
in the resolution of the figure it looks like there is a
period-two attractor. In addition, since the algebraically
defined explicit map makes it amenable to detailed nu-
merical studies, we may model the statistics of reinjection
process utilizing the tent map. Without showing, we
merely state that it is easily found that the distributions
for the length of chaotic phase and for the length of lami-
nar phase are both exponential.

Finally, we point out that the origin of the difference
between SAMS and the Lorenz attractor lies in the type
of linear instability of the limit cycle existing in each sys-
tem. The limit cycles are represented by an unstable fixed
point in the reduced one-dimensional map. As shown in
Fig. 1(a), the fixed point p of SAMS has a slope slightly
less than — 1. This, in terms of the Floquet matrix, is the
case in which the eigenvalue crosses the unit circle of the
complex plane at —1, corresponding to the so-called
subharmonic instability. It is well known, on the other
hand, that the Lorenz attractor has a pair of very small
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FIG. 6. The bifurcation patterns of the algebraically defined
tent map; a(A=1/2), b(A=0.52), ¢(A=0.56), d(A=0.60),
e(A=0.65), f(A=1/V"2). The tent map is representative for
SAMS for a A in the range 1/2 <A <1/v2. Note that the tent
map symmetric at A=1 is representative for the Lorenz attrac-
tor.

limit cycles of saddle type separated by a symmetric dou-
ble homoclinic orbit [1]. In its one-dimensional map, ei-
ther limit cycle reappears as the left bottom part [10]
where the slope is slightly greater than +1, which, in
terms of the Floquet multiplier, corresponds to the cross-
ing at +1. The folding in the Lorenz attractor, in the ab-
sence of any subharmonic, is accomplished instead by
crossing into the other well, which is, after all, compati-
ble with the symmetry of the Lorenz attractor. In fact,
the same Lorenz attractor is also found in the symmetric
coupled-disk dynamo system [11]. In short, there exist
two types of basic structures in this folding category
based on the linear instability of the limit cycle; the sym-
metric Lorenz type and the symmetric SAMS type.

As a final remark, it has been an exciting idea in recent
years that vastly different physical systems may all reduce
down to a few universal forms. The Lorenz attractor is a
universal form, as is the RJssler attractor. This Rapid
Communication asserts that SAMS is another universal
form. But this time the significance of the tent map is
brought out whose relevance to real complex systems has
been unclear.
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